Sprungmarken

Servicenavigation

Hauptnavigation

Sie sind hier:

Hauptinhalt

Yi-Jhen Wu – Wissenschaftlicher Mitarbeiter

Yi-Jhen Wu – Wissenschaftlicher Mitarbeiter Foto von Yi-Jhen Wu

Telefon
(+49)231 755-8195

Sprechzeiten
Nach Vereinbarung

Adresse

Institut für Schulentwicklungsforschung
Campus Nord
CDI

Raum CDI / 111

Inhalt

Arbeitsschwerpunkt

  • Entwicklung zum Thema Wohlbefinden von Jugendlichen und Erwachsene
  • Bildungssystem
  • Fragebogenkonstruktion
  • tem-Response-Theorie

Curriculum Vitae

  • 01/2021 - Wissenschaftliche Mitarbeiterin, Arbeitsgruppe Empirische Bildungsforschung mit dem Schwerpunkt individuelle Entwicklungsverläufe und schulische Rahmenbedingungen
  • 05/2019-12/2020 - Wissenschaftliche Mitarbeiterin, Universitätsmedizin Göttingen
  • 2019: Promotion zum Dr. phil. in Empirische Bildungsforrschung, Otto-Friedrich-Universität Bamberg
  • 2014 Studium der Measurement und Statistics, (M. S.), Florida State University, Florida
  • 2010 Studium der Financial Engineering und Actuarial Mathematics, (B.A), Soochow University, Taipeh

Publikationen

  •  Wu, Y. J., Carstensen, C. H., & Lee, J. (2020). A new perspective on memorization practices among East Asian students based on PISA 2012. Educational Psychology, 40(5), 643-662.
  • Wu, Y. J., Kiefer, S. M., & Chen, Y. H. (2020). Relationships between learning strategies and self-efficacy: A cross-cultural comparison between Taiwan and the United States using latent class analysis. International Journal of School & Educational Psychology, 8(sup1), 91-103.
  • Wu, Y. J., & Paek, I. (2018). Agreement on the Classification of Latent Class Membership Between Different Identification Constraint Approaches in the Mixture Rasch Model. Methodology.
  • Wu, Y.-J, Lan, C.-W, & Yeh, M.-C. (2018). The Plumbing Training in Germany and Its Implications for Taiwan [In Mandarin], Journal of Education Research, 286, 88-102.
  • Wu YJ., Jin KY. (2020) An Extended Item Response Tree Model for Wording Effects in Mixed-Format Scales. In: Wiberg M., Molenaar D., González J., Böckenholt U., Kim JS. (eds) Quantitative Psychology. IMPS 2019. Springer Proceedings in Mathematics & Statistics, vol 322. Springer, Cham.
  • Jin, K.-Y., Wu, Y.-J. & Chen, H.-F. (2019). Adopting the Multi-process Approach to Detect Differential Item Functioning in Likert Scales. In: Wiberg M., Culpepper S., Janssen R., González J., Molenaar D. (Eds.) Quantitative Psychology 83rd Annual Meeting of the Psychometric Society (pp. 307-317). Springer, Cham.

 
Vorträge

  • Lee, J. & Wu, Y.-J. (2020). Students’ Well-being: Cross-national Examination based on PISA 2015 Data. Paper presented at the Australian Conference on Personality and Individual Differences, Brisbane, Australia
  • Wu, Y.-J., Hsu, C.-H., Chen, Y.-H., & Thompson, D. (2019). Exploring the Hierarchical Relationships of van Hiele Geometry Learning Skills Using Diagnostic Classification Modeling. Paper presented at the Section of Educational Psychology and Developmental Psychology (paEpsy) Meeting 2019, Leipzig, Germany
  • Jin, K.-Y., Chen, H.-F., & Wu, Y.-J. (2019). A Two-Decision Unfolding Tree Model for Likert Scale Items. Paper presented at the National Council on Measurement in Education, Toronto, Canada
  • Wu, Y.-J. (2017). The Pattern of Motivation and Learning Strategies in the East Asian Countries from PISA 2012. Paper presented at the 2017 European Association for Research on Learning and Instruction, Tampere, Finland
  • Wu, Y.-J, & Paek, I. (2015). Is the Recovery of Latent Class Membership Highly Consistent by Applying Two Types of Constraints in the Mixture Rasch Modeling? Poster presented at the 80th International Meeting of the Psychometric Society, Beijing, China

Lehre

  • 2019: Introduction to R, the European Consortium for Political Research Winter School in Methods and Techniques (TA), Bamberg, Germany
  • 2019: Structural Equation Modelling with R, the European Consortium for Political Research Winter School in Methods and Techniques (TA), Bamberg, Germany
  • 2014: Analysis of Variance, Department of Educational Psychology and Learning System, Florida State University (TA), Tallahassee, USA

Social Media

ResearchGate Twitter
YouTube LinkedIn